Outline of robotics
Robotics – branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots.[1] Robotics is related to the sciences of electronics, engineering, mechanics, and software.[2] The word "robot" was introduced to the public by Czech writer Karel Čapek in his play R.U.R. (Rossum's Universal Robots), published in 1920. The term "robotics" was coined by Isaac Asimov in his 1941 science fiction short-story "Liar!"[3]
Nature of robotics
Robotics can be described as:
Branches of robotics
Robotics incorporates aspects of many disciplines including electronics, engineering, mechanics, software and arts. Control of robots relies on many areas of robotics, including:[4]
- Adaptive control – control method used by a controller which must adapt to a controlled system with parameters which vary, or are initially uncertain. For example, as an aircraft flies, its mass will slowly decrease as a result of fuel consumption; a control law is needed that adapts itself to such changing conditions.
- Aerial robotics –
- Anthrobotics – science of developing and studying robots that are either entirely or in some way human-like.
- Artificial intelligence – the intelligence of machines and the branch of computer science that aims to create it.
- Autonomous car – an autonomous vehicle capable of fulfilling the human transportation capabilities of a traditional car
- Autonomous research robotics –
- Bayesian network –
- BEAM robotics – a style of robotics that primarily uses simple analogue circuits instead of a microprocessor in order to produce an unusually simple design (in comparison to traditional mobile robots) that trades flexibility for robustness and efficiency in performing the task for which it was designed.
- Behavior-based robotics – the branch of robotics that incorporates modular or behavior based AI (BBAI).
- Biomimetic – see Bionics.
- Biomorphic robotics –
- Bionics – also known as biomimetics, biognosis, biomimicry, or bionical creativity engineering is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology.
- Biorobotics – a study of how to make robots that emulate or simulate living biological organisms mechanically or even chemically.
- Cognitive robotics – views animal cognition as a starting point for the development of robotic information processing, as opposed to more traditional Artificial Intelligence techniques.
- Clustering –
- Computational neuroscience –
- Robot control – a study of controlling robots
- Robotics conventions –
- Data mining Techniques –
- Degrees of freedom –
- Developmental Robotics – a methodology that uses metaphors from neural development and developmental psychology to develop the mind for autonomous robots
- Digital control –
- Digital image processing –
- Dimensionality reduction –
- Distributed robotics –
- Electronic Stability Control –
- Evolutionary computation –
- Evolutionary robotics – a methodology that uses evolutionary computation to develop controllers for autonomous robots
- Extended Kalman filter –
- Flexible Distribution functions –
- Feedback control and Regulation –
- Human–computer interaction – a study, planning and design of the interaction between people (users) and computers
- Human robot interaction – a study of interactions between humans and robots
- Kinematics – study of motion, as applied to robots. This includes both the design of linkages to perform motion, their power, control and stability; also their planning, such as choosing a sequence of movements to achieve a broader task.
- Laboratory robotics –
- Robot learning – learning to perform tasks such as obstacle avoidance, control and various other motion-related tasks
- Manifold learning –
- Direct manipulation interface –
- Robotic mapping – the goal for an autonomous robot to be able to construct (or use ) a map or floor plan and to localize itself in it
- Microrobotics – a field of miniature robotics, in particular mobile robots with characteristic dimensions less than 1 mm
- Motion planning –
- Motor control –
- Nanorobotics –
- Artificial neural networks –
- Passive dynamics –
- Reinforcement learning –
- Programming by Demonstration –
- Robot kinematics –
- Robot locomotion –
- Rapid prototyping – automatic construction of physical objects via additive manufacturing from virtual models in computer aided design (CAD) software, transforming them into thin, virtual, horizontal cross-sections and then producing successive layers until the items are complete. As of June 2011, used for making models, prototype parts, and production-quality parts in relatively small numbers.
- Robot programming –
- Sensors –
- Simultaneous localization and mapping –
- Software engineering –
- Speech processing –
- Support vector machines –
- Robotic surgery –
- Swarm robotics – involves large numbers of mostly simple physical robots. Their actions may seek to incorporate emergent behavior observed in social insects (swarm intelligence).
- Ant robotics – swarm robots that can communicate via markings, similar to ants that lay and follow pheromone trails.
- Telepresence –
- Intelligent vehicle technologies –
- Computer vision –
Contributing fields
Additionally, contributing fields include the specific field(s) a particular robot is being designed for. Expertise in surgical procedures and anatomy, for instance would be required for designing robotic surgery applications.
Related fields
Robots
Types of robots
- Aerobot – robot capable of independent flight on other planets.
- Android – humanoid robot. Robot resembling the shape or form of a human.[5][6]
- Automaton – early self-operating robot, performing exactly the same actions, over and over.
- Autonomous vehicle – vehicle equipped with an autopilot system, which is capable of driving from one point to another without input from a human operator.
- Cruise missile – robot-controlled guided missile that carries an explosive payload.
- Cyborg – also known as a cybernetic organism, a being with both biological and artificial (e.g. electronic, mechanical or robotic) parts.
- Explosive ordnance disposal robot – mobile robot designed to assess whether an object contains explosives; some carry detonators that can be deposited at the object and activated after the robot withdraws.[7]
- Gynoid – humanoid robot designed to look like a human female.
- Hexapod (walker) – A six-legged walking robot, using a simple insect-like locomotion.
- Industrial robot – reprogrammable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.[8]
- Insect robot – small robot designed to imitate insect behaviors rather than complex human behaviors.[7]
- Mobile Robot – self-propelled and self-contained robot that is capable of moving over a mechanically unconstrained course.[8]
- Prosthetic robot – programmable manipulator or device replacing a missing human limb.[8]
- Service robots – machines that extend human capabilities.[8]
- Snakebot – robot or robotic component resembling a tentacle or elephant's trunk, where many small actuators are used to allow continuous curved motion of a robot component, with many degrees of freedom. This is usually applied to snake-arm robots, which use this as a flexible manipulator. A rarer application is the snakebot, where the entire robot is mobile and snake-like, so as to gain access through narrow spaces.
- Surgical robot – remote manipulator used for keyhole surgery
- Walking robot – robot capable of locomotion by walking. Owing to the difficulties of balance, two-legged walking robots have so far been rare and most walking robots have used insect-like multilegged walking gaits.
By mode of locomotion
Mobile robots may be classified by:
- The environment in which they travel:
- Land or home robots. They are most commonly wheeled, but also include legged robots with two or more legs (humanoid, or resembling animals or insects).
- Aerial robots are usually referred to as unmanned aerial vehicles (UAVs)
- Underwater robots are usually called autonomous underwater vehicles (AUVs)
- Polar robots, designed to navigate icy, crevasse filled environments
- The device they use to move, mainly:
Robot components and design features
- Actuator – motor that translates control signals into mechanical movement. The control signals are usually electrical but may, more rarely, be pneumatic or hydraulic. The power supply may likewise be any of these. It is common for electrical control to be used to modulate a high-power pneumatic or hydraulic motor.[7][8]
- Delta robot – tripod linkage, used to construct fast-acting manipulators with a wide range of movement.
- Drive Power – energy source or sources for the robot actuators.[8]
- End-effector – accessory device or tool specifically designed for attachment to the robot wrist or tool mounting plate to enable the robot to perform its intended task. (Examples may include gripper, spot-weld gun, arc-weld gun, spray- paint gun, or any other application tools.)[8]
- Forward chaining – process in which events or received data are considered by an entity to intelligently adapt its behavior.[7]
- Haptic – tactile feedback technology using the operator's sense of touch. Also sometimes applied to robot manipulators with their own touch sensitivity.
- Hexapod (platform) – movable platform using six linear actuators. Often used in flight simulators and fairground rides, they also have applications as a robotic manipulator.
- See Stewart platform
- Hydraulics – control of mechanical force and movement, generated by the application of liquid under pressure. c.f. pneumatics.
- Kalman filter – mathematical technique to estimate the value of a sensor measurement, from a series of intermittent and noisy values.
- Klann linkage – simple linkage for walking robots.
- Manipulator – gripper. A robotic 'hand'.
- Muting – deactivation of a presence-sensing safeguarding device during a portion of the robot cycle.[8]
- Pendant – Any portable control device that permits an operator to control the robot from within the restricted envelope (space) of the robot.[8]
- Pneumatics – control of mechanical force and movement, generated by the application of compressed gas. c.f. hydraulics.
- Servo – motor that moves to and maintains a set position under command, rather than continuously moving.
- Servomechanism – automatic device that uses error-sensing negative feedback to correct the performance of a mechanism.
- Single Point of Control – ability to operate the robot such that initiation or robot motion from one source of control is possible only from that source and cannot be overridden from another source.[8]
- Slow Speed Control – mode of robot motion control where the velocity of the robot is limited to allow persons sufficient time either to withdraw the hazardous motion or stop the robot.[8]
- Stepper motor –
- Stewart platform – movable platform using six linear actuators, hence also known as a Hexapod.
- Subsumption architecture – robot architecture that uses a modular, bottom-up design beginning with the least complex behavioral tasks.
- Teach Mode – control state that allows the generation and storage of positional data points effected by moving the robot arm through a path of intended motions.[8]
Specific robots
- Aura (satellite) – robotic spacecraft launched by NASA in 2004 which collects atmospheric data from Earth.[7]
- Chandra X-ray Observatory – robotic spacecraft launched by NASA in 1999 to collect astronomical data.[7]
- Robonaut – development project conducted by NASA to create humanoid robots capable of using space tools and working in similar environments to suited astronauts.
- Unimate – the first off-the-shelf industrial robot, of 1961.
Real robots by region
Robots from Australia
Robots from Britain
Robots from Canada
- Canadarm2 –
- Dextre –
- ANATROLLER ARI-100 –
- ANATROLLER ARE-100 –
- ANATROLLER ARI-50 –
- ANATROLLER Dusty Duct Destroyer –
- ANAT AMI-100 –
Robots from China
Robots from Croatia
Robots from France
Robots from Germany
Robots from Italy
Robots from Japan
Robots from Mexico
Robots from the Netherlands
Robots from New Zealand
Robots from Portugal
Robots from Qatar
Robots from Russia (or former Soviet Union)
Robots from South Korea
Robots from Spain
Robots from Switzerland
Robots from the United States of America
Robots from Vietnam
International robots
Fictional robots by region
Fictional robots from the United Kingdom
From British literature
From British radio
From British television
Fictional robots from the Czech Republich
From Czech plays
Fictional robots from France
From French ballets
From French literature
Fictional robots from Germany
From German film
From German literature
Fictional robots from Japan
From anime
From manga
Fictional robots from the United States of America
From American comics
From American film
- C-3PO – (George Lucas, Anthony Daniels) {Star Wars}
- ED-209 – (Paul Verhoeven, Craig Hayes, Phil Tippett) {RoboCop}
- Gort – (Robert Wise, Harry Bates, Edmund H. North, Lock Martin) {The Day the Earth Stood Still}
- R2-D2 – (George Lucas, Kenny Baker, Ben Burtt) {Star Wars}
- Robby the Robot – (Fred M. Wilcox, Robert Kinoshita, Frankie Darro, Marvin Miller) {Forbidden Planet}
- The Terminator – (James Cameron, Gale Anne Hurd) {The Terminator}
From American literature
From American television
- Bender Bending Rodriguez – (Matt Groening, David X. Cohen, John DiMaggio) {Futurama}
- Cambot – Gypsy , Crow T. Robot, and Tom Servo (Joel Hodgson, Trace Beaulieu, Bill Corbett, Josh Weinstein, Jim Mallon, Patrick Brantseg) {Mystery Science Theater 3000}
- Data – (Gene Roddenberry, Brent Spiner) {Star Trek: The Next Generation}
- Jenny Wakeman – (Rob Rezenti, Janice Kawaye) {My Life as a Teenage Robot}
- Robot B-9 – (Irwin Allen, Robert Kinoshita, Bob May, Dick Tufeld) {Lost in Space}
- Grounder and Scratch – (Phil Hayes, Gary Chalk ) {Adventures of Sonic the Hedgehog}
History of robotics
Robotics development and development tools
Robotics principles
- Artificial intelligence – intelligence of machines and the branch of computer science that aims to create it.
- Degrees of freedom – extent to which a robot can move itself; expressed in terms of Cartesian coordinates (x, y, and z) and angular movements (yaw, pitch, and roll).[7]
- Emergent behaviour – complicated resultant behaviour that emerges from the repeated operation of simple underlying behaviours.
- Envelope (Space), Maximum – volume of space encompassing the maximum designed movements of all robot parts including the end-effector, workpiece, and attachments.[8]
- Humanoid – resembling a human being in form, function, or both.
- Three Laws of Robotics – coined by the science fiction author Isaac Asimov, one of the first serious considerations of the ethics and robopsychological aspects of robotics.
- Tool Center Point (TCP) – origin of the tool coordinate system.[8]
- Uncanny valley – hypothesized point at which humanoid robot behavior and appearance is so close to that of actual humans as to cause revulsion.
Applications of robotics
- Combat, robot – hobby or sport event where two or more robots fight in an arena to disable each other. This has developed from a hobby in the 1990s to several TV series worldwide.
Robotics organizations
- FIRST (For Inspiration and Recognition of Science and Technology) – organization founded by inventor Dean Kamen in 1989 in order to develop ways to inspire students in engineering and technology fields. It founded various robotics competitions for elementary and high school students.
People influential in the field of robotics
Robotics in popular culture
See also
References
- ^ "robotics". Oxford Dictionaries. http://www.oxforddictionaries.com/view/entry/m_en_gb0714530#m_en_gb0714530. Retrieved 4 February 2011.
- ^ "Industry Spotlight: Robotics from Monster Career Advice". http://content.monster.com/articles/3472/18567/1/industry/12/home.aspx. Retrieved 2007-08-26.
- ^ According to the Oxford English Dictionary, the term "robotics" was first used in the short story "Liar!" published in the May, 1941 issue of Astounding Science Fiction.
- ^ http://robots.newcastle.edu.au/
- ^ V. Daniel Hunt (1983), "Appendix A - Glossary", Industrial robotics handbook, Industrial Press Inc., ISBN 9780831111489
- ^ Helena Domaine (2006), "Glossary", Robotics, Lerner Publications, ISBN 9780822521129
- ^ a b c d e f g h Joseph A. Angelo (2007). Robotics: a reference guide to the new technology. Libraries Unlimited. pp. 258–327. ISBN 9781573563376. http://books.google.com/books?id=73kNFV4sDx8C&pg=PA258&dq=robotics+glossary+terms&hl=en&ei=IN1CTcm1DYScgQfQoPyDAg&sa=X&oi=book_result&ct=result&resnum=2&ved=0CEQQ6AEwAQ#v=onepage&q&f=false. Retrieved 28 January 2011.
- ^ a b c d e f g h i j k l m n "OSHA Technical Manual - SECTION IV: CHAPTER 4 - INDUSTRIAL ROBOTS AND ROBOT SYSTEM SAFETY". Occupational Safety and Health Administration. http://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html#app_iv:4_1. Retrieved 2011-01-28.
- ^ Rail track and Linear track (PDF)
External links
- Research
Outlines
|
|
- General reference
- Culture and the arts
- Geography and places
- Health and fitness
- History and events
- Mathematics and logic
- Natural and physical sciences
- People and self
- Philosophy and thinking
- Religion and belief systems
- Society and social sciences
- Technology and applied sciences
|
|